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Abstract

A solution for the fields at a waveguide~horn junction is derived using the iterative technigue of over-

lapping regiomns.

By dividing the junction into semi-infinite rectangular and sectoral regions and using the

Green's functions for the sub-regions, the problem is reduced to the solution of a system of integral equations of

the Fredholm type. The solution is relatively simple and

the method is shown to be efficient and reliable in com—

parison with other techniques particularly for the reflection coefficient in the feed waveguide.

Introduction

It is generally known that the field expansions in
the sectoral and rectangular sub-regions of a horn-wave-
guide junction cannot be directly matched because of
the absence of a common boundary. Therefore, one has
to either introduce a third field region in the segment,
where neither expansion is valid! and which can be
matched to both expansions in the two sub-regions, or
to proceed to approximate solutions. An approximate
solution, which is said to agree well with experiment
for small sectoral flare angles, is obtained by matching
the fields of the dominant mode in both sug-gegions
at one point «r R and ¢ = 0 in Fig. 17'°. General-
1zed formulation, which treated such class of junction
problems ig aiven elsehwere: Rice wused a
mapping technique to obtain an approximate expression
for the reflection coefficient for both TE and TM
excitation, while Leonard and Yen~ proposed an lterative
procedure which becomes prohibitigely complicated
after more than two steps. Hamid , however, has ob-
tained an approximate expression for the mode coeffic—
ients in the sectoral horn by ray theory.

conformal

In this paper, a solution of the uniform wave-
guide~horn junction is obtained using the iterative
technique of overlapping regions.

Formulation

Schwarz's method of overlapping regions involves
dividing the junction into semi-infinite wedge-shaped
and rectangular overlapping sub-regions as shown in
Fig. 1. Using the Green's functions for the two sub-
regions, the problem is reduced to the solution of a
system of integral equations of the Fredholm type which
is solved by an alternating procedure as described
below.

For the case of an H-plane junction with sectoral
waveguide of flare angle O, we assume a TE 0 mode
excitation in the feed rectangular wavegu1ée 1.e.,the
nonfzeroxelegﬁr%c field compon§nt iﬁwgﬁvgn by =
A sin (=) K - (2717 K

E
17 where K o =2TIA, A
is the wavelength, A is Ehe amplitude of the incident

field and the time dependence is taken as exp (-iwt).

In order to formulate integral equations for the
electric fields E in sub-regions I and 1II, we

I,I . .
make use of the Greég?s functions for Dirichlet boundary
condition, namely G . Hence it is easy to show that
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and where G are to be obtained from G by in-
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terchanging thé Source and observation point” cbordinates.

The second term in eguation (1) requires integra-
tion over the boundary OSB since E vanishes over the

metallic boundaries of region T andIthe first term is
the contribution from the boundary at z It is
also clear that in equation (2) the contribution from
the boundary at r = ® is zero since the fields have to
satisfy the radiation condition. For a symmetrical
junction, the two terms in egquation (2) &dd since the
field& are egual at the boundaries ¢O 3 and ¢o
2m - o)

— oo,

We start the alternating procedure by first consid~
ering the semi~infinite rectangular region. Assuming
values for B (with amplitude related to A as

Iiz=20
will be seen latgr) on the boundary OSB and using equa-
tion (1), it is then possible to determine E at any
point interior to region I, namely on the I planes
00' and 0'B which are the boundaries of the wedge-
shaped region and on which the field is considered in
the integration of eguation (2). Substituting these
values in equation (2), it will be possible to determine
the field at points interior to the sectoral sub-region,
namely along the boundary 0SB, which when substituted
again in equation (1) leads to a second order approx-
imation and so on.



Since the procedure requires that the assumed val-

ues for E must be normalized to A, the normal-
Ilz =0
ization equatgon is obtained by equating the fields in
both sub-regions at a common boundary in the over-lap-
ping region, such as OSB. 1In fact, it 1s easier to use
this equation alternatively by calculating the amplitude
of the incident field for an assumed E with
Y1lz = 0

unity amplitude and then to use the obtaindd A as normal-
izing constant. A final comment on the solution i1s that
while G>(x,z/x ,2 ) will be used in equation (1) (since
the singular source distribution, which is equivalent to
the non-zero flelds(g? the boundarie57 is on the boun-
dary Zo= 0), both G<II are to be used in equation (2)

>

to calculate the field on the boundary OSB.
every point p(r,9) along OS?eye»cglculate r and 9,
there%gye»fgr r<r we use G, (r/ro) and fof r>r %e
use G>I (x/r ) ani consequen%fy each integral in"eg-
uation %2) is divided into two parts.

Since for

If the incident field is the dominant TM mode with
t?e on%ﬁznon-zero magnetic field component given by
H = e , the formulation procedure is essentially the
sime as in ?& TE case except for the use of Green's
functions G corresponding to the Neumann boundary
condition. ~ffi"this case there will appear under the
integral sign of t?g)equations corresponding to (1) and
(2) the function G multiplied by the derivative
of the magnetic fiz1d8 ﬁl with respect to a unit nor-
mal pointing outward from the surface. To overcome the
infinitely large values of this derivative at the
junction edges,we exclude the singulgrity using the
least sguare curve fitting technique .

Although the initially assumed fields on the boun-
daries OSB may be completely arbitrary, a reasonably
good guess from physical considerations will be neces-
sary to reduce the number of iterations. The Green's
function of the semi~-infinite rectangular sub-region
suggests that a Fourier sine series would be guite
appropriate even though a constant field distribution
i.e. E (xo,zo) = constant is allowed by the

I z =0
method as a last %esort.

While the convergence of the successive approx-—
imation to the correct solution is discussed elsewhere
the method has also proved to be efficient since the
computation time is @BEEE adequate compared with other
numerical techniques In particular, the method
is found to be more efficient for siTﬁlar geometries
than the finite difference algorithm and fairly com-
parable with the strgight-forward and extended point
matching techniques™ . However, a major limitation of
the method is the required % mputation time demanded by
many numerical integrations particularly to match
both field expansions on the common boundary OSB. In
order to reduce the computation time, and hence improve
the overall efficiency of the method, we consider
matching the two field expansions on a common boundary
of a sub-region of the overlapping region. This is
achieved by considering sub-triangles of the overall
triangle 0'0OSB, by shifting the base from z = 0 to
z = -d where d varies from zero to R cos — . Thus in
the limit when d equals zero the previous results_are
obtained, while in the other limit when d = R cosz the
matching boundary shrinks to a single point coinciding
with the apex of the sectoral waveguide, hence allowing
comparison with published results for the magnitude of
the reflection coefficient obtained by matching the
dominantlmade 1n both regions at the mid-point of the
junction™’ Between these two limits the results for
junction reflection coefficient are presented together
with the required computation time and compared with

’
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published data15_17.

Conclusions

The iterative procedure involving overlapping re-—
gions has been applied to the junction of rectangular
and sectoral waveguides to obtain efficient solution
for the field distribution and junction reflection
coefficient which compare favourably with published
results based on other techniques. These results can
be used to select a matching element at the junction
and to obtain the overall reflection coefficient at the
junction a sectoral horn and a rectangular feed
waveguide™ . Scattering matrix techniques can also be
used to obtain the solution for higher order modes or
multiple junctions which can be similarly formulated by
the present method.
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