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Abstract

A solution for the fields at a waveguide-horn junction is derived using the iterative technique of over-

lapping regions. By dividing the junction into semi-infinite rectangular and sectoral regions and using the

Green’s functions for the sub-regions, the problem is reduced to the solution of a system of integral equations of

the Fredholm tvpe. The solution is relatively simple and the method is shown to be efficient and reliable in com–. . . .
parison with other techniques particularly for the reflection coefficient in the feed waveguide.

Introduction

It is generally known that the field expansions in

the sectoral and rectangular sub-regions of a horn-wave-

guide junction cannot be directly matched because of

the absence of a common boundary. Therefore, one has

to either introduce a third field region in the segment,

where neither expansion is validl and which can be

matched to both expansions in the two sub-regions, or

to proceed to approximate solutions. An approximate

solution, which is said to agree well with experiment

for small sectoral flare angles, is obtained by matching

the fields of the dominant mode in both s ~:~egions

at one point r=R and @ = O in Fig. 1 . General-

ized formulation, which treated su:h class of junction

problems is ~lven elseh~~ere: Rice used a conformal

mapping technique to obtain an approximate expression

for the reflection coefficient fo

excitation, while Leonard and Y.> =Z~~ Herati”e

procedure which becomes prohibiti ely complicated
x

after more than two steps. Hamid , however, has ob-

tained an approximate expression for the mode ,coeffic–

ients in the sectoral horn by ray theory.

In this paper, a solution of the uniform wave–

guide-horn junction is obtained using the iterative

technique of overlapping regions.

Formulation

Schwarz’s method of overlapping regions involves

dividing the junction into semi-infinite wedge–shaped

and rectangular overlapping sub-regions as shown in

Fig. 1. Using the Green’s functions for the two sub-

regions, the problem is reduced to the solution of a

system of integral equations of the Fredholm type which

is solved by an alternating procedure as described

below.

For the case of an H-plane junction with sectoral

waveguide of flare angle U, we assume a TE

k“

mode

excitation In the feed rectangular wavegul e l.e.ithe

non-zer~xele~~r:c field compon~nt i:flg~vgn by E =

A sin (~) e 1 where K = [K - (~) ] , K =2n7)L, ~

is the wavelength, A is ?he am~litude of the”inc~dent

field and the time dependence is taken as exp (-iwt).

In order to formulate integral equations for the

electric fields E In sub-regions I and II, we

‘%
make use of the Gre n s functions for Dirichlet boundary

condition, namely G Hence it is easy to show that777.
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are to be obtained from b in-
>1 II .Y

terchanging t & source and observation point cbord~nates.

The second term in equation (1) requires integra-

tion over the boundary OSB since E vanishes over the
Y1

metallic boundaries of region I and the first term is

the contribution from the boundary at z = - CO. It is

also clear that in equation (2) the contribution from

the boundary at r = ~ is zero since the fields have to

satisfy the radiation condition. For a symmetrical

junction, the two terms in eauation (2) ~dd since the

field~ are equal at the boundaries $ = : and $0 =
0

2Tr-~.

We start the alternating procedure by first consid-

ering the semi-infinite rectangular region. Assuming

values for E (with amplitude related to A as

‘Iz=O

will be seen lat&) on the boundary OSB and using equa-

tion (l), it is then possible to determine E at any

point interior to region I, namely on the ‘I planes

00’ and O(B which are the boundaries of the wedge-

shaped region and on which the field is considered in

the integrat~on of equation (2). Substituting these

values in equation (2), it will be possible to determine

the field at points interior to the sectoral sub-region,

namely along the boundary OSB, which when substituted

again in equation (1) leads to a second order approx-

imation and so on.



Since the procedure requires that the assumed val-

ues for E must be normalized to A, the normal–
Y Iz=O

ization equat?on is obtained by equating the fields in

both sub-regions at a common boundary in the over-lap-

ping region, such as OSB. In fact, it I.s easier to use

this equation alternatively by calculating the amplitude

of the incident field for an assumed E with
Y~z=o

unity amplitude and then to use the obtain~d A as normal-

izing constant. A final comment on the solution IS that

while G>(x,z/x ,Z ) will be used in equation (1) (since

the singular s~ur~e distribution, which is equivalent to

the non-zero f~elds o
(e~

the boundaries? is on the boun-

dary Zo= O) , both G<ll are to be used in equation (2)
.

to calculate the fi~ld on the boundary OSB. Since for

every point p(r,$) along OS

&:@fe+@ ‘<r
we use C,TeY%~’yu;;;ef;~ ;: ‘t?;

(r/r ) an8 conseque~~~y ea~h integral inpeq-

uatio~1~2) i~divided into two parts.

If the incident field is the dominant TM mode with

the onl~znon-zero magnetic field component given by

H= = el the formulation procedure is essentially the

she as i: h TE case except for the use of Green’s

functions $my corresponding to the Neumann boundary

condition. ll~lthis case there will appear under the

?m)
integral sign of t e equations corresponding to (1) and

(2) the function G1 multiplied by the derivative

of the magnetic fiela~ fil with respect to a unit nor-

mal pointing outward frog the surface. TO overcome the

infinitely large values of this derivative at the

junction edges,we exclude the singularity using the

least sauare curve flttmg technique .

Although the in~tlally assumed fields on the boun-

daries OSB may be completely arbitrary, a reasonably

good guess from physical considerations will be neces-

sary to reduce the number of iterations. The Green’s

function of the semi-infinite rectangular sub–region

suggests that a Fourier sine series would be quite

appropriate even though a constant field distribution

i.e. E (X., 2.) = constant is allowed by the

‘I Z=o

method as a last ~esort.

While the convergence of the successive approx-
9

imation to the correct solution is discussed elsewhere ,

the method has also proved to be efficient since the

r~~;;~~~O~e~~q~~s~U&f? adequate cO~Paredwith otherIn particular, the method

is found to be more efficient for si

than the finite difference algorithm

~~lar geometries

and fairly com-

matching technques5$~gh~~~~~daa~~jEt~~~~~~~tof

parable with the st

the method is the required ~~mputat i on time demanded by

many numerical integrations particularly to match

both field expansions on the common boundary OSB. In

order to reduce the computation tir,e, and hence improve

the overall efficiency of the method, we consider

matching the two field expansions on a common boundary

of a sub-region of the overlapping region. This is

achieved by considering sub-tr~angles of the overall

triangle O’OSB, by shifting the base fromaz = O to

z . -d where d varies from zero to R cos ~ . Thus in

the limit when d equals zero the previous resultsaare

obtained, while in the other limit when d = R cos— the

matchinu boundary shrinks to a single point coinciding

with the apex of the sectoral waveguide, hence allowing

comparison with published results for the magnitude of

the reflection coefficient obtained by matching the

dominant r de In both regions at the mid-point of the
1,2

junction . Between these two limits the results for

junction reflection coeffic~ent are presented together

with the required computation time and compared with

15–17
published data .

Conclusions

The iterative procedure involving overlapping re-

gions has been applied to the junction of rectangular

and sectoral waveguides to obtain efficient solution

for the field distribution and junction reflection

coefficient which compare favorably with published

results based on other techniques. These results can

be used to select a matching element at the junction

and to obtain the overall reflection coefficient at the

~~~~~e?l a ‘e’toral

horn and a rectangular feed

Scattering matrix techniques can also be

used to obtain the solution for higher order modes or

multiple junctions which can be similarly formulated by

the
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